see how the statistical operations can reduce noise in the image, which is of benefit to the
feature extraction techniques to be considered later. As such, these basic operations are usually
for preprocessing for later feature extraction or to improve display quality.

3.2 Histograms

The intensity histogram shows how individual brightness levels are occupied in an image; the
image contrast is measured by the range of brightness levels. The histogram plots the number
of pixels with a particular brightness level against the brightness level. For 8 bit pixels, the
brightness ranges from zero (black) to 255 (white). Figure 3.1 shows an image of an eye and its
histogram. The histogram (Figure 3.1b) shows that not all the grey levels are used and the lowest
and highest intensity levels are close together, reflecting moderate contrast. The histogram has
a region between 100 and 120 brightness values which contains the dark portions of the image,
such as the hair (including the eyebrow) and the eye’s iris. The brighter points relate mainly to
the skin. If the image was darker, overall, the histogram would be concentrated towards black.
If the image was brighter, but with lower contrast, then the histogram would be thinner and
concentrated near the whiter brightness levels.

400 T

p_histogrambrigm 200 +

0 100 200
bright
(a) Image of eye (b) Histogram of eye image

Figure 3.1 An image and its histogram

This histogram shows us that we have not used all available grey levels. Accordingly,
we could stretch the image to use them all, and the image would become clearer. This is
essentially cosmetic attention to make the image’s appearance better. Making the appearance
better, especially in view of later processing, is the focus of many basic image processing
operations, as will be covered in this chapter. The histogram can also reveal whether there is
much noise in the image, if the ideal histogram is known. We might want to remove this noise,
not only to improve the appearance of the image, but also to ease the task of (and to present the
target better for) later feature extraction techniques. This chapter concerns these basic operations
which can improve the appearance and quality of images.

The histogram can be evaluated by the operator histogram, in Code 3.1. The operator first
initializes the histogram to zero. Then, the operator works by counting up the number of image
points that have an intensity at a particular value. These counts for the different values form the
overall histogram. The counts are then returned as the two-dimensional (2D) histogram (a vector
of the count values), which can be plotted as a graph (Figure 3.1b).

70 Feature Extraction and Image Processing

histogram(pic) :=| for brighte0..255
pixels_at_level, ;<0

for x€0..cols(pic)-1
for ye0..rows (pic)-1

level«pic,

pixels_at_level ¢ Ppixels_at_leveli ,o1+1

pixels_at_level

Code 3.1 Evaluating the histogram

3.3 Point operators

3.3.1 Basic point operations

The most basic operations in image processing are point operations where each pixel value is
replaced with a new value obtained from the old one. If we want to increase the brightness to
stretch the contrast we can simply multiply all pixel values by a scalar, say by 2 to double the
range. Conversely, to reduce the contrast (although this is not usual) we can divide all point
values by a scalar. If the overall brightness is controlled by a level, [, (e.g. the brightness of
global light) and the range is controlled by a gain, k, the brightness of the points in a new
picture, N, can be related to the brightness in old picture, O, by:

N,,=kx0,,+1 Vx,yel,N (3.1)

This is a point operator that replaces the brightness at points in the picture according to a
linear brightness relation. The level controls overall brightness and is the minimum value of the
output picture. The gain controls the contrast, or range, and if the gain is greater than unity, the
output range will be increased. This process is illustrated in Figure 3.2. So the image of the eye,
processed by k = 1.2 and [= 10, will become brighter (Figure 3.2a) and with better contrast,
although in this case the brighter points are mostly set near to white (255). These factors can
be seen in its histogram (Figure 3.2b).

400 T T
e
‘4 m b_eye_hist, gy 200 -

0
0 100 200
-~ bright
(a) Image of brighter eye (b) Histogram of brighter eye

Figure 3.2 Brightening an image

Basic image processing operations 71

The basis of the implementation of point operators was given earlier, for addition in Code 1.3.
The stretching process can be displayed as a mapping between the input and output ranges,
according to the specified relationship, as in Figure 3.3. Figure 3.3(a) is a mapping where the
output is a direct copy of the input (this relationship is the dotted line in Figure 3.3c and d);
Figure 3.3(b) is the mapping for brightness inversion where dark parts in an image become
bright and vice versa. Figure 3.3(c) is the mapping for addition and Figure 3.3(d) is the mapping
for multiplication (or division, if the slope was less than that of the input). In these mappings,
if the mapping produces values that are smaller than the expected minimum (say negative when
zero represents black), or larger than a specified maximum, then a clipping process can be used
to set the output values to a chosen level. For example, if the relationship between input and
output aims to produce output points with intensity value greater than 255, as used for white,
the output value can be set to white for these points, as it is in Figure 3.3(c).

Output brightness Output brightness
White —| White —
Black i X Black] .
Black White Input brightness Black White Input brightness
(a) Copy (b) Brightness inversion
Output brightness Output brightness
White —| White |
Black ‘ : Black ‘ _
Black White Input brightness Black White Input brightness
(c) Brightness addition (d) Brightness scaling by multiplication

Figure 3.3 Intensity mappings

The sawtooth operator is an alternative form of the linear operator and uses a repeated form
of the linear operator for chosen intervals in the brightness range. The sawtooth operator is used
to emphasize local contrast change (as in images where regions of interest can be light or dark).
This is illustrated in Figure 3.4, where the range of brightness levels is mapped into four linear
regions by the sawtooth operator (Figure 3.4b). This remaps the intensity in the eye image to

72 Feature Extraction and Image Processing

50 +

saw_toothqn

1 1

0 100 200

bright
(a) Image of ‘sawn’ eye (b) Sawtooth operator

Figure 3.4 Applying the sawtooth operator

highlight local intensity variation, as opposed to global variation, in Figure 3.4(a). The image is
now presented in regions, where the region selection is controlled by the intensity of its pixels.

Finally, rather than simple multiplication we can use arithmetic functions such as logarithm
to reduce the range or exponent to increase it. This can be used, say, to equalize the response of a
camera, or to compress the range of displayed brightness levels. If the camera has a known expo-
nential performance, and outputs a value for brightness which is proportional to the exponential
of the brightness of the corresponding point in the scene of view, the application of a logarith-
mic point operator will restore the original range of brightness levels. The effect of replacing
brightness by a scaled version of its natural logarithm (implemented as N, , =201In(1000, ,))
is shown in Figure 3.5(a); the effect of a scaled version of the exponent (implemented as
N, , =20exp(0O, ,/100)) is shown in Figure 3.5(b). The scaling factors were chosen to ensure
that the resulting image can be displayed since the logarithm or exponent greatly reduces or
magnifies pixel values, respectively. This can be seen in the results: Figure 3.5(a) is dark with a
small range of brightness levels, whereas Figure 3.5(b) is much brighter, with greater contrast.
Naturally, application of the logarithmic point operator will change any multiplicative changes
in brightness to become additive. As such, the logarithmic operator can find application in
reducing the effects of multiplicative intensity change. The logarithm operator is often used to

(a) Logarithmic compression (b) Exponential expansion

Figure 3.5 Applying exponential and logarithmic point operators

Basic image processing operations 73

compress Fourier transforms, for display purposes. This is because the d.c. component can be
very large with contrast, too large to allow the other points to be seen.

In hardware, point operators can be implemented using look-up tables (LUTSs), which exist in
some framegrabber units. LUTs give an output that is programmed, and stored, in a table entry
that corresponds to a particular input value. If the brightness response of the camera is known,
it is possible to preprogram a LUT to make the camera response equivalent to a uniform or flat
response across the range of brightness levels.

3.3.2 Histogram normalization

Popular techniques to stretch the range of intensities include histogram (intensity) normalization.
Here, the original histogram is stretched, and shifted, to cover all the 256 available levels. If the
original histogram of old picture O starts at O, and extends up to O,,,, brightness levels, then
we can scale up the image so that the pixels in the new picture N lie between a minimum output

level N, ;, and a maximum level N, ., simply by scaling up the input intensity levels according to:
Niax — Nii
No=o" "0 <(04,=0u)+Nu, VryelLN (3.2)

max min

A Matlab implementation of intensity normalization, appearing to mimic Matlab’s imagesc
function, the normalize function in Code 3.2, uses an output ranging from N_, =0 to
N...x = 255. This is scaled by the input range that is determined by applying the max and the min
operators to the input picture. Note that in Matlab, a 2D array needs double application of the

max and min operators, whereas in Mathcad max (image) delivers the maximum. Each point

function normalized=normalize (image)
%Histogram normalization to stretch from black to white

%Usage: [new image]=normalize (image)
%Parameters: image-array of integers
%Author: Mark S. Nixon

%get dimensions
[rows,cols]=size(image) ;

%set minimum
minim=min (min (image)) ;

gwork out range of input levels
range=max (max (image)) -minim;

%normalize the image
for x=1:cols %address all columns
for y=1:rows %address all rows
normalized(y,x)=floor((image(y,x)-minim) *255/range) ;
end
end

Code 3.2 Intensity normalization

74 Feature Extraction and Image Processing

